Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 22(16)2021 Aug 22.
Article in English | MEDLINE | ID: covidwho-1372662

ABSTRACT

Natural products of microbial origin have inspired most of the commercial pharmaceuticals, especially those from Actinobacteria. However, the redundancy of molecules in the discovery process represents a serious issue. The untargeted approach, One Strain Many Compounds (OSMAC), is one of the most promising strategies to induce the expression of silent genes, especially when combined with genome mining and advanced metabolomics analysis. In this work, the whole genome of the marine isolate Rhodococcus sp. I2R was sequenced and analyzed by antiSMASH for the identification of biosynthetic gene clusters. The strain was cultivated in 22 different growth media and the generated extracts were subjected to metabolomic analysis and functional screening. Notably, only a single growth condition induced the production of unique compounds, which were partially purified and structurally characterized by liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). This strategy led to identifying a bioactive fraction containing >30 new glycolipids holding unusual functional groups. The active fraction showed a potent antiviral effect against enveloped viruses, such as herpes simplex virus and human coronaviruses, and high antiproliferative activity in PC3 prostate cancer cell line. The identified compounds belong to the biosurfactants class, amphiphilic molecules, which play a crucial role in the biotech and biomedical industry.


Subject(s)
Antiviral Agents/metabolism , Glycolipids/metabolism , Rhodococcus/metabolism , Animals , Antiviral Agents/analysis , Chlorocebus aethiops , Culture Techniques , Drug Screening Assays, Antitumor , Esters/metabolism , Genome, Bacterial , Glycolipids/chemistry , Humans , Metabolome , Microbial Sensitivity Tests , Molecular Structure , PC-3 Cells , Rhodococcus/chemistry , Rhodococcus/genetics , Succinates/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Vero Cells
2.
J Hematol Oncol ; 13(1): 120, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-744994

ABSTRACT

BACKGROUND: Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear. METHODS: Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl3-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo. RESULTS: We demonstrated that COVID-19 patients present with increased mean platelet volume (MPV) and platelet hyperactivity, which correlated with a decrease in overall platelet count. Detectable SARS-CoV-2 RNA in the blood stream was associated with platelet hyperactivity in critically ill patients. Platelets expressed ACE2, a host cell receptor for SARS-CoV-2, and TMPRSS2, a serine protease for Spike protein priming. SARS-CoV-2 and its Spike protein directly enhanced platelet activation such as platelet aggregation, PAC-1 binding, CD62P expression, α granule secretion, dense granule release, platelet spreading, and clot retraction in vitro, and thereby Spike protein enhanced thrombosis formation in wild-type mice transfused with hACE2 transgenic platelets, but this was not observed in animals transfused with wild-type platelets in vivo. Further, we provided evidence suggesting that the MAPK pathway, downstream of ACE2, mediates the potentiating role of SARS-CoV-2 on platelet activation, and that platelet ACE2 expression decreases following SARS-COV-2 stimulation. SARS-CoV-2 and its Spike protein directly stimulated platelets to facilitate the release of coagulation factors, the secretion of inflammatory factors, and the formation of leukocyte-platelet aggregates. Recombinant human ACE2 protein and anti-Spike monoclonal antibody could inhibit SARS-CoV-2 Spike protein-induced platelet activation. CONCLUSIONS: Our findings uncovered a novel function of SARS-CoV-2 on platelet activation via binding of Spike to ACE2. SARS-CoV-2-induced platelet activation may participate in thrombus formation and inflammatory responses in COVID-19 patients.


Subject(s)
Betacoronavirus/metabolism , Blood Platelets/metabolism , Coronavirus Infections/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Thrombosis/metabolism , Adult , Aged , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , COVID-19 , Caco-2 Cells , Coronavirus Infections/virology , Female , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , PC-3 Cells , Pandemics , Peptidyl-Dipeptidase A/genetics , Platelet Aggregation/immunology , Platelet Count , Pneumonia, Viral/virology , RNA, Viral/blood , SARS-CoV-2 , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Thrombosis/virology
SELECTION OF CITATIONS
SEARCH DETAIL